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We study charge transport in an ionic solution in a confined nanoscale geometry in the presence of an
externally applied electric field and immobile background charges. For a range of parameters, the ion current
shows nonmonotonic behavior as a function of the external ion concentration. For small applied electric field,
the ion transport can be understood from simple analytic arguments, which are supported by Monte Carlo
simulations. The results qualitatively explain measurements of ion current seen in a recent experiment on ion
transport through a DNA-threaded nanopore �D. J. Bonthuis et al., Phys. Rev. Lett, 97, 128104 �2006��.
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I. INTRODUCTION

Because of its central role in maintaining the homeostasis
of cells, ion transport through channels across cell mem-
branes is of great importance �1–4�. In a system with free
ions, such as an aqueous solution, one might expect the ion
current I to increase with increasing external ion concentra-
tion c when a constant electric field is applied. Surprisingly,
in the presence of immobile charges fixed in the channel, the
opposite may occur, with ion current decreasing with in-
creasing c. For example, in the case of water-filled biological
channels with strong ion binding sites, the ion conductance
has been observed to reach a maximum and then decreases
�or saturates� as c increases �5�; similar behavior is observed
in DNA-threaded nanopores connecting two reservoirs �6�.

An ion channel may be thought of as a thin hollow tube of
length L where ions can enter or leave only through pores at
the two ends. Because of the large difference in the dielectric
constants of water ��w�80� and the membrane containing
the channel ��m�2�, introducing an uncompensated ion into
the channel requires overcoming an energy barrier due to the
ion’s self-energy US �7�. The reason for this is that, because
�w��m, an ion’s electric field lines are concentrated inside
the channel over a length proportional to l1

��w /�m, where l1
is the shortest dimension of the channel �8�. The specific
form that US takes depends on the nature of the channel. For
a planar channel the electrostatic potential varies as U�r�
� ln r for length scales l1

��w /�m�r� l1, while for a linear
channel U�r��r. For channels which are relatively short and
narrow, the larger dimension of the channel L� l1

��w /�m
� l1; this implies that the self-energies scale as ln�L / l1� / l1
and L / l1

2 in planar �l1�L�L� and one-dimensional �l1� l1
�L� geometries, respectively. For example, for a water-filled
channel of dimensions 1�1�5 nm3, US is about 7 kT at
T=300 K where k is the Boltzmann constant �9�.

Nonmonotonic behavior in charged channels was previ-
ously studied theoretically using a single vacancy model
�10�, under the assumption that the channel was strictly one-
dimensional. A more recent study considered the ion current
in a channel threaded with charged DNA, where the avail-
able space for ion motion was assumed to be effectively
two-dimensional. In this case, the nonmonotonic behavior
was attributed to the two-dimensional specifics of the chan-
nel and the self-energy of the ions, and to a boundary layer
effect at the edges of the channel �6�.

In this paper we present a many-particle statistical model
of interacting ions, and argue that, in the presence of fixed
background charges inside the channel, the large self-energy
of an individual ion is sufficient to give rise to a nonmono-
tonic ion current I as a function of external ion concentration
c. Our main result is that, irrespective of the effective chan-
nel dimension, there is a crossover temperature T��US /k,
below which the ion current may exhibit nonmonotonicity.
However, above T�, the ion current is a monotonically in-
creasing function of c. Consequently, nonmonotonic behav-
ior can be observed only when US is large enough for T� to
be above the freezing temperature of water. For example,
when U�r��1 /r, as in large three-dimensional cavities, T� is
much below the freezing temperature of water but when
U�r�� ln r, the I�c� curve may have a minimum even at
room temperature. In any case, for very high �or very low�
density of background charges, I increases monotonically
with c as is naively expected. This is summarized in Fig. 1.

The above results are the consequence of two main com-
peting mechanisms for ion transport: �1� Hopping current Ih:
At low temperature, the fixed background charges are
screened by counterions, which thus reside in close proxim-
ity to the background charges—one may think of the coun-
terions as sitting “on the sites” of the background charges.
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FIG. 1. Phase diagram of ion transport in a channel of confined
geometry at temperature T and volume V with NB immobile back-
ground charges inside the channel. The thick line denotes the cross-
over temperature T�. The two insets are plots of ion current I versus
external ion concentration c.
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However, if one of the background charges is not screened �a
“hole”�, the screening counterion of an adjacent background
charge can hop to it. Ih is approximately proportional to
�h��0−�h�, where �h is the density of holes, and �0 is some
constant. Since �h decreases with increasing c, the ion cur-
rent first increases, attains a maximum �at �h=�0 /2� and then
decreases. �2� Bulk current Ib: Ions that are not strongly at-
tached to any counterions will move more or less freely in-
side the channel, and, biased by the electric field, will con-
tribute to the total ion current. Ib is a monotonically
increasing function of c. The total ion current I is sum of the
hopping current Ih and the bulk current Ib, i.e., I= Ih+ Ib.

It may be noted that the above intuitive picture for the
hole current Ih has a quantitative description in terms of a
simple model for driven diffusion, the partially asymmetric
simple exclusion process �PASEP� �13�. The PASEP consid-
ers a one-dimensional lattice of sites, each of which may be
either empty or occupied by a single particle. Particles may
enter or leave the system at its ends, and a particle may hop
to an adjacent site provided it is unoccupied. The parameters
of the model are the rate of influx �� ,�� and outflux �� ,	� of
particles at the left and right ends, respectively, and the hop-
ping rates between sites: q
1 and 1, to the left and right,
respectively �where the applied electric field may be thought
of as the cause of asymmetry of the hopping rates�. In the ion
channel, a fixed charge screened by a counterion maps to an
occupied site in the PASEP model, and an unscreened fixed
charge maps to an unoccupied site in the PASEP.

The phase diagram of the PASEP model has been fully
elucidated �see for example, �12,13��. If the incoming rates �
and � are taken to be proportional to the external ion con-
centration c, the behavior of current Ih can be immediately
obtained using these results. It follows from �12� that Ih�c
for small c, and Ih�1 /c for large c. At intermediate c, the
current attains a maximum or a plateau. In the PASEP model,
the various rates are taken to be constant, but, in reality, rates
will depend on specific configurations of the system. Clearly
the PASEP model cannot capture the appearance of the mini-
mum in the I�c� curve.

II. MODEL

To understand the full behavior of the ion current, we will
consider a statistical mechanical model of interacting ions in
an ion channel. We take the channel to be in contact with a
reservoir of fixed chemical potential � and temperature T.
For simplicity, we will consider a discrete model, where the
positions of ions lie on a lattice. For our model, we use the
energy function of a system of N interacting ions of hardcore
radius r0, given by

H =
1

2	
i�j

qiqjU�rij� +
1

2
U0N − �N , �1�

where qi= �1 is the charge of ith ion, U�rij� is the interac-
tion potential of ions i and j, whose separation is rij, N is
the total number of ions and we denote U0
U�rij =r0�; the
self-energy of an ion is given by US=U0 /2. The definition
of the Hamiltonian absorbs the chemical potential �
0,

for simplicity assumed to be the same for both positive
and negative ions, which is related to the fugacity z
=exp�� /kT�. The kinetic energy of the ions has been ne-
glected, since ion motion in a fluid is overdamped. Addition-
ally, we have assumed that the electrostatic potential U�r�� of
a unit positive charge at position r� inside the channel decays
rapidly outside the channel.

Note that inserting a bound neutral pair �one +, one −
charge� costs an energy −2�: because of cancellation there is
no contribution from the first two terms in Eq. �1�. The
fugacity z controls the density of ions inside the channel.
Ions can enter into the channel only through boundary sites
at the channel’s two open ends which are connected to the
reservoir sites with ion concentration c. Assuming that the
reservoir is modeled by a system of hard-core noninteracting
particles of radius r0, the ion concentration c of the reservoir
is related to its fugacity by c=v0

−1z / �1+z� where v0
= �4 /3�
r0

3. For very small fugacity z�1, the external ion
concentration can be written as c�z /v0.

When the externally applied electric field is not large, it
is reasonable to assume that local thermal equilibrium is
maintained. We thus include a constant external electric field
Ex̂ along the channel axis. Using 	i�j qiqj = ��	iqi�2−	iqi

2�,
Eq. �1� may be rewritten

HE =
1

2	
i�j

qiqj�U�rij� − U0� − E	
i

qixi

− �N+ − N− − NB�2kT ln�zb� − NkT ln�z� , �2�

where we have explicitly indicated the NB immobile negative
background charges, and where the sum is over all pairs of
ions except those where both are background charges. Here
N+ and N− are the total number of positive and negative
mobile ions respectively, N= �N++N−�, xi the x coordinate
of ith mobile ion, and zb
exp�−US /kT�. For small zb, charge
fluctuations in a finite channel are small, and the channel
remains almost charge-neutral �N+−N−−NB��0 �11�. The
process of ion transport across a channel is schematically
presented in Fig. 2. In what follows, we present a small-
fugacity �low external ion concentration� analysis of the
model, whose results are then supported by numerical calcu-
lations.

III. RESULTS

Consider first the system at zero electric field; the charge
distribution is then governed by the partition function

E

FIG. 2. Schematic representation of ion transport across a chan-
nel with a constant applied electric field E. The negative charges
along the channel axis are immobile. All other ions are mobile, with
their external concentration being c.
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Z = 	 1

N+!N−!
e−�H0,

where H0 is the energy function of Eq. �2� with E=0, the
sum is over all configurations �running over all values of N+
and N−, as well as positions of the charges�, and �
1 /kT.
For small electric fields, i.e., either qEr0�kT or qEr0
�q2 /�wr0 �interaction strength being much larger than the
energy cost due to the electric field�, the charge distribution
will be essentially the same as for E=0; we will use this to
calculate the ion current. In the experiment of �6�, the electric
field E is about 0.08 kT /Å per electronic charge �this corre-
sponds to potential drop of 100 mV across an ion channel
of length 5 nm�, so our analysis should be applicable to the
experiment. In what follows, we use numerics to explore
also the regions where the small field assumption is violated,
and show that the qualitative picture is still maintained.

We first analyze the model in the small fugacity limit z
�1, which corresponds to small external ion concentration
�c�z /v0 as mentioned in Sec. II�. Following this, we study
the full model using Monte Carlo simulations.

A. Small fugacity expansion

Let us consider fugacities z�zb�1. In this limit, we may
expand Z in powers of z and zb. Collecting leading order
terms, we obtain �14�

Z � zNB + NBzNB−1zb + O�zNB−2zb
4� + O�VzNB+1zb�

+ O�VzNB+2� , �3�

where V is the channel volume measured in units of
ionic volume. The terms on the right hand side have the
following interpretations. zNB-all immobile charges are
screened �no holes�; NBzNB−1zb-a single unscreened immobile
charge �one hole, which may be at any of the NB positions�;
O�zNB−2zb

4�-two unscreened immobile charges �two holes�;
O�VzNB+1zb�-one excess positive or negative charge �apart
from the screened backbone charges�; O�VzNB+2�-one excess
bound pair of positive and negative charges. The notation
O�x� indicates that we do not explicitly write the com-
binatorial factor, that is, O�x��x. In the last two terms, the
factor V accounts for the possible placements of the extra
positive or negative charges. For zb�z�z��min�V−1/2 ,
�zbNB /V�1/3�, Eq. �3� can be well approximated by the first
two terms alone, so the probability Ph that there is exactly
one hole can be written as

Ph �
NBzNB−1zb

Z
�

NBzb

�NBzb + z�
. �4�

In what follows, we will consider the behavior of the ion
current in three fugacity regimes.

�i� Regime I: z
zb
�ii� Regime II: zb
z�z�

�iii� Regime III: z�z�

Regime I �small fugacity�: If z is smaller than zb, but not
extremely small, the dominant contribution to Eq. �3� comes
from one uncompensated immobile background charge �i.e.,
a hole�. This means that current flows by sequential hopping

of positive charges from one background charge to another:
the hole moves from one end of the system to the other. The
probability Ph of having one hole in the system depends
weakly on z in this regime. Since Ph�1 in this regime, the
ion current is limited by the low external ion concentration.
Therefore, for the current to flow, the hole must recombine
with an ion from outside the channel; this occurs with a rate
proportional to z /zb, and therefore to c. This gives total ion
current I� Ih�z or I�c.

Regime II �intermediate fugacity�: In this regime, the
probability Ph of having one hole goes as 1 /z. Since for z
�zb the recombination rate can be approximately taken as 1,
the hole current is simply proportional to the hole density, so
that

Ih � � �
zb

�NBzb + z�
, �5�

where � is a constant related to the jump rate of a hole from
site to site along the backbone of immobile charges. Since
such motion may be thought of as hopping between potential
wells, � may in principle be calculated from Kramers’ theory
in the presence of a driving force �the electric field�. In this
regime, where the charge concentration is low, � is indepen-
dent of z to leading order.

Regime III is the large fugacity limit 1�z�z�, where
extra charges enter the system, although the immobile back-
ground charges are already fully compensated. In this regime
the ion current is expected to increase with increasing fugac-
ity. Since neutral pairs of charges will enter the channel more
easily than uncompensated charges, the number of charges
inside the channel should increase as z2�c2. Thus, the ion
current is expected to behave as I�c2.

In sum, as a function of increasing external ion concen-
tration c, we have the following picture: The ion current rises
linearly as I�c in Region I, falls inversely with c as 1 /c in
Region II, and rises again approximately as I�c2 in Region
III. Thus, it is the passage from Regime I to II that deter-
mines the nonmonotonic behavior. One should note that the
minimum in the I�c� curve occurs approximately at the ex-
ternal ion concentration c�z� /v0. We note however, that in
some cases, Regime II may be unobtainable—this happens
when z�
zb. In this case, Regime I crosses smoothly over to
Regime III, and the ion current increases monotonically with
c over its entire range. In other words, Regime II is present
only if T
T�, where T�=2US /k ln�V /NB�. This can be seen
by comparing the two terms, second and fifth, in Eq. �3� in
the fugacity region z�zb where nonmonotonic behavior in
I�c� may appear.

Note that T� increases with the number of bound charges
NB. This increase in T� can be understood from a simple
physical picture. When NB�V, the bulk density of excess
unbound ions are far greater than the hole density inside the
channel, due to the large entropic volume factor V in Eq. �3�.
Thus the bulk current always dominates over the hole cur-
rent. Since the bulk current is a monotonic function of c,
there will be no minimum in the I�c� curve. On the other
hand, for larger NB
V, the density of holes increases in the
channel, and with it the hole current which dominates now.
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Since the hole current is nonmonotonic in c, a minimum
appears in the I�c� curve.

The above picture breaks down when the density of im-
mobile background charges, and therefore the density of
screening counterions, is so high that an ion is no longer
bound to any specific background charge and can move
freely �without hopping� from one background charge to an-
other. This occurs when the typical distance between back-
ground charges is smaller than the screening length. Essen-
tially in this case, the hopping barrier between neighboring
background charges decreases as the background charge den-
sity increases. Under such conditions of very high immobile
background charge density, we expect the ion current to in-
crease monotonically with external ion concentration.

B. Numerical results

To support these simple arguments, we have performed
Monte Carlo simulations. For computational convenience,
ions are only allowed to move in discrete steps on a square
lattice, with each site able to accommodate at most one ion.
Ions can enter and leave the system only from two opposite
surfaces, representing the pores of the channel. We denote by
�HE and �H0 the energy difference between configurations
after and before a possible Monte Carlo move, where HE and
H0 are, respectively, the Hamiltonians in Eq. �2� with and
without the electric field. The simulation is carried out by
performing the following two steps.

�1� Creation/destruction of charges: A boundary site is
chosen randomly and, if it is empty, a positive �negative�
charge is created with probability min� 1

2 , 1
2e−�H0/kT�. If the

site is occupied, the charge is destroyed with probability
min�1,e−�H0/kT�.

�2� Movement of charges in the bulk: A site in the interior
of the lattice is chosen randomly and, if occupied, its charge
is moved to a randomly chosen unoccupied neighboring site
�which is also in the interior of the lattice� with probability
min� 1

4 , 1
4e−�HE/kT�.

In the Monte Carlo simulations, these two steps are per-
formed repeatedly and every site is updated with rate one per
Monte Carlo time step. Note that in step �1�, an update at-
tempt is accepted/rejected on the basis of calculating �H0
�not �HE� to ensure equal densities at the two boundaries of
the system. For E=0, the system eventually comes to equi-
librium, while for E�0, the system settles into a nonequi-
librium steady state with a net ion current across the channel
in the x direction.

Motivated by the experiment of Ref. �6� which is effec-
tively two-dimensional, we performed a simulation on an L
�L lattice using the above protocol, with the interaction po-
tential taken to be U�r�= �2e2 /�wr0�ln�L /r�, where e is the
electron charge, and r0�0.35 nm �6�. An immobile linear
array of equally spaced unit negative charges is placed on a
line parallel to the x axis in the middle of the channel, at y
=L /2, to mimic the presence of charged ss-DNA in the ex-
periment. One should note that when L is large and NB=0,
Eq. �2� is the two-dimensional �2D� Coulomb gas Hamil-
tonian �15�.

In Fig. 3 we plot the total ion current versus external ion
concentration for different temperatures. As expected from

the arguments presented above, the numerical results are
qualitatively different in two different temperature regimes.
For T
T��300 K, the ion current I first increases with
c for small c, then reaches a maximum and subsequently
decreases �16�. Increasing c further, I reaches a minimum
and then starts increasing with c. In our simulation, the I�c�
curve for T=280 K has a shallow minimum which occurs
slightly below c=0.3 M, in reasonable agreement with the
experiment �6� where the minimum occurs near c=0.5 M.
The maximum in the I�c� curve in the simulation occurs at
c�0.03 M. This regime was not probed in the experiment
of �6�. For T�T� the ion current I is a monotonically in-
creasing function of external ion concentration c. The nu-
merical value of T��300 K is somewhat smaller than T�

=2US / �k ln�V /NB��=816 K, the value predicted from the
small fugacity expansion. Such order of magnitude agree-
ment is about all that could be expected from such a simple
argument.

In Fig. 4, we plot numerical results for the ion current I,
the probability Ph that the system has exactly one hole, and
the average total number of ions n per site as a function of
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FIG. 3. �Color online� Ion current I �in arbitrary units� vs exter-
nal ion concentration c �in Moles� is plotted for different tempera-
tures. Here L=30�dK+ where the diameter dK+ of a K+ ion is 0.26
nm, E=5.4 mV /nm along x axis, NB=6 negative immobile back-
ground charges.
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FIG. 4. �Color online� Ion current I �in arbitrary units�, prob-
ability Ph of exactly one hole and average total number of ions per
site n, plotted versus external ion concentration c �in Moles�. Here
E=1.1 mV /nm, T=150 K, L=30�dK, zb=1.23�10−6 and NB=6.
n has been scaled by a factor 0.22 so that it fits in the figure.
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the external ion concentration where both Ph and n are scaled
suitably to relate to I for T
T�. As can be seen at low
external ion concentrations �c�0.2�, single hole hopping is
responsible for the ion current. For larger external ion con-
centrations, the number of free bulk ions increases, and the
ion current, almost entirely due to flowing ions in the bulk,
rises. For large self-energies, as explained in Sec. III A, the
number of unbound charges inside the system increases as c2

for z�
cv0�1. This is also observed in the simulations
which can be seen in Fig. 4 showing a concomitant rise in
ion current. In Fig. 4 the ion current I, scaled probability Ph
of exactly one hole and scaled total number of ions/site n is
plotted versus external ion concentration c with an electric
field E=1.1 mV /nm, temperature T=150 K, L=30�dK
where dK=0.26 nm is the diameter of a K+ ion, zb=1.23
�10−6 and NB=6 negative immobile background charges.
Note that the analytic expressions for the probability of
one-hole configuration and the hole current, as given in
Eqs. �4� and �5�, are valid in the small electric field limit
when qEr0�kT or qEr0�q2 /�wr0. At very low temperature,
the condition qEr0�kT may be violated. However, the con-
dition qEr0�q2 /�wr0, which is independent of any tempera-
ture, is well satisfied where �qEr0�� ��wr0 /q2��0.07 with
E=20 mV /nm and q the electronic charge �17�.

In Fig. 5, we have plotted the ion current as a function of
external ion concentration for T=150 K for two different
values of NB, where the linear immobile background charge
array is kept in the middle of a 30�30 lattice. As discussed
at the end of the previous section, very large NB leads to a
decrease in the hopping barrier between the immobile
charges which flattens out the minimum in the I�c� curve. We
see that, for very large value of NB, i.e., when the immobile
charges are located very close to each other, there is no ob-
served minimum in the I�c� curve even at the very low �and
experimentally inaccessible� temperature T=150 K.

Finally, it is worth noting the influence of the effective
dimension of the system, which manifests itself in the func-

tional form of the Coulomb interaction. In Monte Carlo
simulations of the same geometry �a 30�30 lattice with a
linear array of NB=6 negative immobile charges in the
middle�, but employing the faster decaying Coulomb inter-
action U�r�=1 /r appropriate to three dimensions, we found
that a minimum in the I�c� plot can in principle occur. How-
ever, this occurs only at extremely low temperatures: T
�36 K which is clearly experimentally irrelevant. In Fig. 6,
I�c� is plotted for different temperatures with an electric field
E=5.4 mV /nm applied in the x direction.

This demonstrates that the nonmonotonic behavior of I�c�
does not depend in an essential way on the existence of a
Donnan potential as suggested in �6�. In particular, the essen-
tial ingredient for the nonmonotonicity is the large self-
energy of an ion in the channel, resulting from the large
disparity between the dielectric constants and the small di-
mensions of the channel, and enhanced by the long-range
nature of the Coulomb interaction in two dimensions. Under
other conditions, we would not expect T� to be large enough
for the effect to be observed.

Finally, in addition to electrostatic interactions, one might
inquire as to the importance of hydrodynamic interactions. It
is easy to see that hydrodynamic interactions are important
only for systems which are much larger than some charac-
teristic scale R�. The length scale R� may be estimated by
comparing the electrostatic and the hydrodynamic forces be-
tween two ions separated by a distance r. In SI units, the
electrostatic interaction �in three dimensions� is fE= e2

4
�0kwr2

while the hydrodynamic force is fH=�udr0 /r, � is the vis-
cous drag coefficient, �0 is the dielectric constant of the
vacuum, r0 is the radius of the ion, e is the charge of the ion
and ud is the ion drift velocity. Taking ud= �eE /��, where E
is the electric field acting on the ions in the channel, we
obtain R�=e / �4
�0�wr0E�. For the experimental conditions
of �6�, R��10 nm which is larger than the channel scale
�the same result holds in two dimensions�. In this paper our
interest has been in this regime, consequently we have ig-
nored hydrodynamic interactions.

IV. SUMMARY

We have studied charge transport across a nanoscale ion
channel in an ionic solution, in the presence of an external
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FIG. 5. �Color online� Ion current I �in arbitrary units� vs exter-
nal ion concentration c �in Moles� for two different values of NB.
Here T=150 K, E=25.0 mV /nm along the x axis, and L=30
�dK+, where the diameter dK+ of a K+ ion is 0.26 nm. For a linear
array of background charges in the middle �along y=L /2� with
large NB=30, even at a very low temperature T=150 K, there is no
minimum in the ion current vs external ion concentration curve.
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FIG. 6. �Color online� Coulomb interaction U�r��1 /r: Ion cur-
rent I �in arbitrary units� vs external ion concentration c �in Moles�
plotted for different temperatures. Here E=5.4 mV /nm along the x
axis, NB=6, and L=30�dK+, where the diameter dK+ of a K+ ion is
0.26 nm.
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electric field and immobile background charges in the chan-
nel. For a range of parameters, the ion current shows non-
monotonic behavior as a function of the external ion concen-
tration in the solution. When the applied electric field is
small, the ion transport can be understood from simple ana-
lytic arguments, which are supported by Monte Carlo simu-
lations. We argue that for any finite self-energy of the mobile
ions in the channel, nonmonotonic behavior in the current-
concentration curve always results at sufficiently low tem-

peratures. Our results compare well with the recent experi-
ments presented in �6�.
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